Cultivating An Emergent Order In The Energy System

Clean Power

Published on February 28th, 2019 | by The Beam

February 28th, 2019 by The Beam 

This article was published in The Beam #7 — Subscribe now for more on the topic.

By Kyle Baranko

“Everything — 9 to 5 jobs, flat rate energy bills, three-car garages —  is organized according to the misconception that fossil fuels will always be around to provide energy exactly at our convenience.”

Traditional economics, as the discipline largely responsible for guiding decision makers in government, has several flawed attributes that make it especially dangerous as an ideological framework for the renewable energy transition. It places the environment in a black box — an exogenous externality in most models — supposedly unrelated to market fluctuations. The misconception arose at the dawn of the industrial revolution, a time when Western civilization first believed humankind, through the power of technology, could subdue the rough edges of the natural world.

Photo: Gustavo Centurion

In reality, environmental and energy processes play the driving role in economic activity. Value, as money, circles through the economy unscathed, but the scarce minerals and fossil fuels it represents have linear lifespans governed by the laws of thermodynamics. Everything — 9 to 5 jobs, flat rate energy bills, three-car garages —  is organized according to the misconception that fossil fuels will always be around to provide energy exactly at our convenience. The challenge of embracing renewable energy is just as much mental as it is technical. It requires ditching the dominant industrial cognitive paradigm that still persists in an age where the transition away from fossil fuels use is imperative.

Historical energy systems, including those found in nature, were entirely reliant on the natural flows of solar, wind and water, not artificial stocks of coal and oil; this temporary burst in energy consumption and economic growth will soon level off as civilization, willingly or unwillingly, shifts to renewable resources. The coming transition’s success requires integrated solutions that reorganize economic activity to maximize the strengths and minimize the weaknesses of solar, wind, and hydropower.

The key to maximizing our return on sustainable forms of energy lies in wielding the powerful force of emergent behavior, a characteristic of the natural world fundamentally beyond our understanding and empirical ability to harness. How do schools of fish and flocks of birds move in synch? How do the biosphere and weather patterns influence ecosystems? How do ant colonies communicate? Scientists have theories, but in reality, complex systems with infinite variables are impossible to quantify; we can only recreate and harness their benefits in select cases. Some examples: the mysterious efficiencies of the market Adam Smith identified and dubbed the ‘invisible hand’, the organic evolution of language, and Internet memes, etc. We don’t know how emergent behavior works, but we know the way to cultivate this precious resource is to decentralize power, control, and decision-making.

Photo: David Cristian

The primary challenges of integrating renewables and economic activity are weathering variability and adjusting to decentralized generation. Any sustainable economy needs cheap inputs of electricity from solar, wind, geothermal, tidal, and hydro, which are all ill-suited for powering an industrial economy and will only be more strained as heating and transportation becomes electrified. Undoubtedly, technical innovations are needed to boost output and provide storage solutions, but reorganizing the grid to accommodate the peculiarities and limitations of these resources can also address these challenges. This requires introducing a level of complexity into the system that would overwhelm any centrally planned entity; we must make each node on the grid a connected, autonomous actor with the goal of coaxing out emergent behavior and natural order.

By exposing consumers and prosumers to the risk and reward of a wholesale electricity market based on the variable rhythm of natural systems, existing digital technology can sync energy consumption with the biophysical world and mimic natural communication systems. If all items using and producing energy are connected to one network, in an Energy Internet, then the profit motive can direct actors to operate in the interest of the overall system by coaxing out the most efficient use of each type of generation, storage, and demand response. This profit motive will further develop IoT products and generate a technology cluster of co-innovation as the market incentivizes improvements distributed energy resources and demand response agents.

Decentralizing decision-making creates scalable, reconfigurable, and self-organizing information and control infrastructure with precise responsiveness. Grid operators can’t always adjust a Nest thermostat when the grid is strained, but an autonomous unit governed by a set of smart contracts can shut down once market prices exceed the owner’s preference. Home battery systems can soak up power during the day and offload electricity at peak evening hours to garner profit for owners. These IoT and grid asset devices are better capable of self-optimizing in real time to ensure efficient performance while integrating energy in all forms, taking advantage of peak renewable flows, and reducing overexposure when the sun is not shining and the wind is not blowing. We need products that enable users to outsource thinking, set preferences, make money for their users.

“The primary challenges of integrating renewables and economic activity are weathering variability and adjusting to decentralized generation.”

By gradually and smartly exposing everyone to wholesale market risk, we can begin to optimize our lives around renewable energy and provide people with the opportunity to participate in optimizing electricity in the whole system. The fossil fuel age allowed societies to stifle the volatility of natural energy systems — the full return to renewables will require shaping economic activity around their characteristics and using digital technology to embrace stressors. We have to soak up electricity when it is plentiful and become hyper efficient when it is expensive. As the nervous system of the economy, this digital grid can form a natural, emergent order and ensure our energy use is optimized with the environment, not lead to its demise.

Kyle recently graduated from Boston College with a degree in International Political Economy. He enjoys writing about complexity theory, biophysical economics, and the intersection of renewable energy and blockchain technology

Subscribe to The Beam for more on the topic.

Read more from The Beam.



Tags: emergent behavior, Energy Internet, energy transition

About the Author

The Beam The Beam Magazine is a quarterly print publication that takes a modern perspective on the energy transition. From Berlin we report about the people, companies and organizations that shape our sustainable energy future around the world. The team is headed by journalist Anne-Sophie Garrigou and designer Dimitris Gkikas. The Beam works with a network of experts and contributors to cover topics from technology to art, from policy to sustainability, from VCs to cleantech start ups. Our language is energy transition and that’s spoken everywhere. The Beam is already being distributed in most countries in Europe, but also in Niger, Kenya, Rwanda, Tanzania, Japan, Chile and the United States. And this is just the beginning. So stay tuned for future development and follow us on Facebook, Twitter, Instagram and Medium.

Share this post if you enjoyed! 🙂

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *